AbstractStateSpace

Represents a generalized state space which will provide core methods to index into a basis and generate representations

keep_excitations: bool
keep_indices: bool
StateSpaceSpec: StateSpaceSpec
StateSpaceCache: StateSpaceCache
excitations_dtype: dtype[int8]
indices_dtype: dtype[uint64]

 

__init__(self, basis): 
  • basis: RepresentationBasis

 

to_state(self, serializer=None): 

Provides just the state that is needed to serialize the object

  • serializer: Any
  • :returns: _

 

from_state(state, serializer=None): 

Loads from the stored state

  • serializer: Any
  • :returns: _

 

@property
ndim(self): 

 

@property
excitations(self): 

 

@property
mode(self): 

 

get_mode(self): 

Returns the mode (indices or excitations) for the held states

  • :returns: _

 

@property
has_indices(self): 

 

@property
has_excitations(self): 

 

@property
indices(self): 

 

@property
indexer(self): 

 

@property
exc_indexer(self): 

 

find(self, to_search, check=True, minimal_dtype=False, dtype=None, missing_val='raise'): 

Finds the indices of a set of indices inside the space

  • to_search: np.ndarray | AbstractStateSpace

    array of ints

  • :returns: _

 

__len__(self): 

 

@property
unique_len(self): 

 

@property
unique_indices(self): 

Returns the unique indices

  • :returns: _

 

@property
unique_excitations(self): 

Returns the unique excitations

  • :returns: _

 

as_indices(self): 

Returns the index version of the stored states

  • :returns: np.ndarray

 

as_unique_indices(self, sort=False): 

Returns unique indices

  • :returns: _

 

as_excitations(self): 

Returns the excitation version of the stored states

  • :returns: np.ndarray

 

as_unique_excitations(self, sort=False): 

Returns unique excitations

  • :returns: _

 

get_representation_indices(self, other=None, selection_rules=None, freqs=None, freq_threshold=None): 

Returns bra and ket indices that can be used as indices to generate representations

  • other: Any
  • selection_rules: Any
  • freqs: Any
  • freq_threshold: Any
  • :returns: (np.ndarray, np.ndarray)

 

get_representation_brakets(self, other=None, selection_rules=None, freqs=None, freq_threshold=None): 

Returns a BraKetSpace that can be used as generate representations

  • other: Any
  • selection_rules: Any
  • freqs: Any
  • freq_threshold: Any
  • :returns: BraKetSpace

 

take_states(self, states): 

Takes the intersection of self and the specified states

  • states: Any
  • :returns: _

 

take_subspace(self, sel): 

Takes a subset of the states

  • sel: Any
  • :returns: AbstractStateSpace

 

take_subdimensions(self, inds): 

Takes a subset of the state dimensions

  • sel: Any
  • :returns: AbstractStateSpace

 

drop_states(self, states): 

Takes the difference of self and the specified states

  • states: Any
  • :returns: _

 

drop_subspace(self, sel): 

Drops a subset of the states

  • sel: Any
  • :returns: AbstractStateSpace

 

drop_subdimensions(self, inds): 

Drops a subset of the state dimensions

  • sel: Any
  • :returns: AbstractStateSpace

 

get_states_with_quanta(n, ndim): 

Returns the states with number of quanta equal to n

  • quanta: Any
  • :returns: _

 

num_states_with_quanta(n, ndim): 

Returns the states with number of quanta equal to n

  • quanta: Any
  • :returns: _

 

to_single(self, track_excitations=True, track_indices=True): 

Flattens any complicated state space structure into a single space like a BasisStateSpace

  • :returns: _

 

split(self, chunksize): 

Subclass overridable function to allow for spaces to be split up into chunks

  • chunksize: Any
  • :returns: _

 

share(self, shared_memory_manager): 

 

unshare(self, shared_memory_manager): 

Feedback

Examples

Templates

Documentation